中教数据库 > 仪器仪表学报 > 文章详情

基于多特征卷积神经网路的运动想象脑电信号分析及意图识别

更新时间:2023-05-28

【摘要】为了准确提取个体运动想象脑电信号的最优时段和频段特征以及有效提高其分类准确率,结合卷积神经网络和集成分类方法提出一种多特征卷积神经网络(MFCNN)算法,对运动想象脑电信号进行分类识别。首先对脑电信号进行预处理,然后将原始信号、能量特征、功率谱特征以及融合特征分别输入到卷积神经网络中得到其训练模型,最后通过加权投票的集成分类方法得到最终的分类结果。并利用2008年BCI竞赛Datasets 2b数据集和实测数据对所提出的方法进行实验分析。结果表明,所提的MFCNN方法可有效提高运动想象识别率,实验中所有受试者的平均分类正确率和平均Kappa值分别为78.6%和0.57,为运动想象类脑机接口的应用提供了新的思路和方法。

【关键词】

379 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号